用户名:
    密码:

你的位置:首页 > 科学技术哲学

陈晓平:贝叶斯检验与库恩范式
录入: 哲学网编辑部 发表时间: 2013-06-04 点击: 3450 次 我要收藏

在这里,h代表被检验假设,e代表证据,?e和?h分别表示e和h是假的。我们看到,认证推理和否证推理是不对称的,表现在:认证推理的结论是或然性的,而否证推理的结论是必然性的;这是因为认证推理不是一个有效的演绎推理,而否证推理是一个有效的演绎推理。正因为此,波普尔只承认否证检验的合法性,从而以“演绎主义”和“证伪主义”自称。这意味着,波普尔还没有完全摈弃单理论检验模式。
贝叶斯检验模型是以概率论中的贝叶斯定理为依据的,原则上它可以考虑任意多个竞争假设,不过出于简单和实用的需要,这里只考虑涉及两个竞争假设的贝叶斯定理,即:
在以上公式中,P(h1/e)表示被检验假设h1相对于证据e的验后概率(posterior probability),P(h1)和P(e/h1)分别表示h1的验前概率(prior probability)和h1对e的预测度(degree of prediction)。(包括萨尔蒙在内的许多作者把P(e/h)称为“h相对于e的似然度 (degree of likelihood) ”,本文采用伯克斯(A. Burks)的“预测度”说法。)同样的符号及其解释也适用于竞争假设h2。另外,不同的学派对概率给以不同的解释,本文采用贝叶斯主义的解释,即把概率解释为个人的置信度(degree of belief),故贝叶斯主义(Bayesianism)也叫做“主观主义”或“私人主义”(Personalism)。
从贝叶斯定理我们看到,假设h1的验后概率是通过它和竞争假设h2的验前概率和预测度来计算的。对被检验假设的验后概率和验前概率加以比较,便能确定该证据是否认证该假设,即:如果P(h/e)>P(h),那么,e认证h;如果P(h/e)<P(h),那么,e否证h;如果P(h/e)=P(h),那么,e无关于h。这就是所谓的“正相关标准(positive relevance criterion)”。(参见[7], pp.133-141; [4], Chapter 7)
由贝叶斯定理和正相关标准可以得出一系列重要的定理,其中一个即将用到的定理是“预测度定理”:如果h1和h2是互斥且穷举的,那么:e认证、否证或无关于h1,当且仅当,P(e/h1)大于、小于或等于P(e/h2)。这就是说,当h1和h2是仅有的两个竞争假设时,被检验假设h1能否得到e的认证取决于h1对e的预测度是否大于h2对e的预测度。可见,竞争假设的“预测度”之间的差异对于贝叶斯检验模型来说是一个关键的因素。(参见[7], p.112; [10] , pp.131-132)
二、再看科学革命的结构
库恩以其《科学革命的结构》(1962年)一鸣惊人,在逻辑实证主义和证伪主义大行其道的当时,吹入一股历史主义的清风。库恩在详细考察科学史的基础上提出常规科学和科学革命交替进行的发展模式,其核心概念是“科学共同体”和“科学范式”。科学范式“代表着一个特定共同体的成员所共有的信念、价值、技术等等构成的整体。”同时,它还提供一些解决疑难的范例,“可以取代明确的规则以作为常规科学中其他謎题解答的基础”([1],p. 157) 在常规科学时期,科学共同体是在同一个范式内从事科学活动的,没有或不考虑与之对立的其他范式。当科学家们遇到疑难问题或反常事实时只是归咎于自己的解题能力,而不归咎于他所遵从的科学范式。只有到了疑难问题或反常事实长期得不到解决而且急剧增加的时候,科学家们才对范式本身发生怀疑,原来的疑难问题或反常事实都成为针对范式的反例,这时便进入危机时期。其结果是,新的范式出现,科学家们最终用一个新范式代替旧范式,这便是科学革命,进而到达一个新的常规科学时期。如哥白尼的日心说、达尔文的进化论和爱因斯坦的相对论等都是通过科学革命而成为新的常规科学的范式。下面我们从贝叶斯检验模型的角度进一步阐释库恩所展示的科学革命的结构。
如库恩所说,在常规科学时期,科学共同体奉行同一个范式。这时,似乎单理论的假设-演绎检验模型是适用的。然而事实上,当唯一的现行范式遇到反常事实e时,科学共同体并不把它看作针对范式的反例,而是看作范式内部有待解决的謎题,因而,假设-演绎的否证模型在这里并不适用。库恩说到:“一个科学理论,一旦达到范式的地位,要宣布它无效,就必须有另一个合适的候选者取代它的地位才行。科学发展的历史研究已经告诉我们,迄今为止根本就不像否证主义方法论框框所说的能直接与自然作比较的过程。”([1],p.71)这就是说,反常事实要变成具有否证作用的反例,必须有待于另一个与现行范式相竞争的范式出现;科学检验只能是多理论的,而不可能是单理论的。
从贝叶斯定理可以知道,贝叶斯检验模型是多理论检验模型,即它至少涉及两个相互竞争的理论,即竞争理论的数目n≥2。但是,在常规科学时期,范式只有一个,即n=1,因而不具备贝叶斯检验的先决条件。这意味着,任何证据都不构成对现行范式的检验,或者说,现行范式是免于检验的。对于这一点,我们还可进一步分析如下:
在现行范式面对反常事实的时候,检验所涉及的范式数目n=1,这就是说,只有被检验假设h1,而没有与之竞争的其他假设,在这种情况下,贝叶斯公式蜕化为:
由此公式可以看到,只要P(h1)和P(e/h1)均不为0,则P(h1/e)=1。我们知道,在常规科学时期,科学共同体对现行范式,更确切地说,对现行范式的核心理论h1是确信不疑的,因而他们对h1的验前置信度(即验前概率)P(h1)为1;面对反常事实e, h1对e的预测度是P(e/h1)>0,而非P(e/h1)=0,因为科学共同体不相信有任何现象是现行范式不能解释的。既然P (h1)和P(e/h1)均不为0,根据贝叶斯定理,则有P(h1/e)=1= P(h1)。又根据正相关标准,e与h1是无关的。这也就是说,面对反常事实,科学共同体对现行范式的确信是一如既往的,反常事实e对于他们的置信度不会发生影响。在这个意义上,现行范式免于检验。
在常规科学时期,当现行范式遇到反常时,科学共同体的预测度P(e/h1)之所以大于0,其逻辑上的理由是:由现行范式h1推出一个预测?e,而?e被表明是假的即e被证实,人们便把e看作h1的一个反常;但是,通常关于“h1推出?e”即“h1??e”的说法并不准确,因为h1??e实际上只是h1

原创文章,转载请注明: 转载自我的哲学网:Philosophy,哲学家,哲学名言大全

本文链接地址: 陈晓平:贝叶斯检验与库恩范式

文章的脚注信息由WordPress的wp-posturl插件自动生成

标签 :
版权声明:版权归 我的哲学网:Philosophy,哲学家,哲学名言大全 所有,转载请注明出处!

转载请保留链接: http://www.zhexue.org/f/kezhe/4327.html

发表评论

电子邮件地址不会被公开。 必填项已用*标注

您可以使用这些HTML标签和属性: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

我的哲学
哲学 未经授权禁止复制或建立镜像,采用Wordpress架构,采用知识共享署名进行许可
邮箱:admin#zhexue.org (#换成@)优畅优化|阿里云强力驱动
ICP证号:浙ICP备16005704号-2
网站加载1.025秒
知识共享许可协议