用户名:
    密码:
转播到腾讯微博

你的位置:首页 > 中国哲学

中国哲学——太极几何论
录入: 哲学网编辑部 发表时间: 2013-05-15 点击: 790 次 我要收藏

  内容提要:基于几何学的哲学本质,将“没有大小(部份)”的几何“点”定义为“自身无限”的太极“点”,使拓扑学的空间连通性可以理解,从而物理空间与几何空间得到统一。“变易”、“太极”、“阴、阳”、“互补”成为精确定义的现代学术概念,西方学术理论中传统的“以太”思想可以得到中国式阐释,量子理论中的最困惑的认识论问题能够“简单”地被表达。
1.几何学中的无限
  1.1.点的几何学
  1.1.1.点是数学中的最基本的元素,但点的自身性质却是最不清楚的,代数中的点、几何学中的点、物理学中的点,其本质都不相同,以几何为例,欧几里德的定义是“点是没部份的”(Definition 1. A point is that which has no part),这个定义是哲学式的精粹,但在数学意义上并不严格,所以现在一般定义是:点是没有(尺寸)大小的。这个定义仍然不能满足现代科学理论的需要,为了满足物理空间的内涵,必须定义:点是空间中的位置。但这样定义,实际上,只是点与空间相互定义,这当然这是一种定义循环,但是逻辑正确,作为几何学公设性定义,在几何学自身的范围内没有讨论的余地。当然这并不妨碍我们在更高的视角上考察点的意义。
  1.1.2.在纯粹的几何意义上,几何点与纯代数中的点所研究的性质不同,比如代数中的点有“无理点”与“有理点”这样不同性质的区别,而在纯粹的几何学中,就不讨论“无穷小”这样的作为数的点与点之间的“间隙”问题,这可以看作是纯粹几何学的前提。
  比如我们取两条0与1之间的线段,它们是等长的,如果我们移去1这个端点,就无法在几何的意义上比较它们的长度,因为它们“本身”的长度是不确定的0.999……,这样就无法在几何的意义上比较它们的长度,代数上以1这个极限“作为”它们的大小,并且正是在极限研究的意义上建立起了分析理论,成为现代数学的基础,但在纯粹意义的几何学中则不能,因为空间中的位置的意义就是相对确定性,如果没有位置的确定性,几何学自身就没有意义。
  (为了适合不习惯数学语言读者,以下省去一些限制性语法表达,但有数学专业知识的读者仍可以以严格的方式理解。)
  1.2.端点的几何原理
  1.2.1.欧几里德几何原本中定义:线(线段)的两端是点,(Definition 1. The ends of a line are points.)直线平直地在它自身上以点(延伸)(Definition 4. A straight line is a line which lies evenly with the points on itself) ,直线无限延伸性质来自公设:有限线段在(无限)直线上连续地产生(延长)(Postulate 2.To produce a finite straight line continuously in a straight line.)虽然欧几里德避免了使用无限这个词,但“无限延伸”是暗中包含在他的几何学中的,无限延伸实际上是一种空间直觉,欧几里德以线段在直线上连续延伸的运动表达了这种直觉,在他的定义中,他不得不含糊地使用无限长直线,是因为无限在他的几何学中没有立足的基础。
  几何原本中实际上包含的观念是:直线由点构成,直线是以点延伸的,而且线直线在它的端点上延伸与直线在直线“内”的点上延伸没有区别。
  1.2.2.直线的两端各是一个“点”,但我们不能说一个一个点处于线端而成为端点,而应当说端点使直线成为线段,这是一个重要的区别,直线的端如果不是“点”,直线的端就是开放的,在这种情况下,直线具有不确定的几何长度,在纯粹的几何中就没有意义,因此端点在几何学上具有特殊意义,这正是我们研究的起点。
  1.2.3.直线的端点只有两个,而直线中的常点是无数的,端点处在直线的两端,一方是直线内(上),一方是直线外,这与常点总是处在直线上(内)不同,我们可以想象地理解端点只有点的“一半”,即使我们无法直观地相象点的一半是什么图象,我们仍可仿照量子力学中的办法,把它看成是点的内禀性质——“无限”的“量子性质”的表征。这种“半”的意义并不与点的现代观念相矛盾,比如,“点是无限可分的”就与“点是没有大小”的不相矛盾,正因为没有大小,才是无限可分的,或者正是因为无限可分,点才是没有大小的,这样,我们定义中的几何学意义的“半”就与物理意义的无限可分具有同一性,在这种“现代”学术的意义上,“半”(端)点就是普遍意义上的无限可分性的一种精确几何表达,
  1,2,4,半端点的定义对欧几里德的“点是没有部份的”定义来说,这是有问题的,因为没有“部份”,就没有“半”的意义,但问题在于“部份”这个词的意义也是不清晰的,因此与其说“半”端点的定义与欧几里德的定义相矛盾,不如说半端点暴露了欧几里德的“点是没有部份的”这个定义的含糊性,它排斥了点自身的内涵,至少,作为公设,定义半端点并不妨碍理论的无矛盾展开,而且正是在这个意义上,我们的研究才具有意义,这一点与非欧几何对欧氏几何的意义相同。
  1.2.5.我们知道点与点的几何关系只有两种,重合与不重合,这与数学分析理论不同,分析就是基于点与点可以无限接近——即不重合也不不重合。因此我们可以想象无限长几何直线的两端点也只能是重合或不重合两种状态中的任何一种,就是说在几何的纯粹性上不可能存在第三种状态:如果不重合,就是几何原本中定义的“线段”,如果重合——这是一个最简朴而合理的直觉想象,则两个半开放的端点重合为一个“无限远点”,这里的“重合”一词与“半”的意义一样作量子理论的几何解释,即直线在无限远处自身相连,这实际就是欧氏几何中的没有明确定义的无限长直线的精确意义。
  1.2.6.点具有几何无限性的内禀本质,点的自身无限性与无限长直线同一。
  1.3.太极点与太极空间
  1.3.1.为了研究这种意义上的自身相连的无限长直线,我们必须在一个普通欧氏平面中表达它,现在让我们想象这根无限长线绷紧或投影在一个普通平面上,我们就得到了这个平面上的一个线圆,但这个圆具有一个无限点,我们不过以普通点代替了那个无限点,为了记住这个区别,也为了以下的理论展开,我们重新命名这一点为“太极点”,但在这个圆上,我们并不能确定太极点在那一点,这样任何一点都可以是太极点,即线圆是由太极点构成,这并不会产生矛盾:如果我们在任意处切断这根圆线,就有两种情况:在点与点之间切开,得到线段,或者,把一个点自身切开,得到无限长的直线。
  同理,所有的几何元素都可以依此定义,而且,如果空间由太极点构成,就是太极空间。
  1.3.2.这样定义的太极点和太极空间是从几何学出发的,但具有更一般的哲学意义,就是说太极点具有了“自身的意义”而不仅仅只是空间中的位置,这种定义具有复杂的内涵,在此不展开讨论,我们现在只是这样确定,通过对几何无限点的几何表达,“太极点”具有自身无限性这样一个内禀“本质”。可以指出,太极点和太极空间具有一种本质的物理学意义,由此,几何空间与物理空间有了表达的同一性,为了以后物理学上理解的方便,我们可以称太极点和太极空间为“以太”点和“以太”空间,就是

文章的脚注信息由WordPress的wp-posturl插件自动生成


分享到:

标签 :
已有 0 条评论
关于我们 | 图站地图 | 版权声明 | 广告刊例 | 加入团队 | 联系我们 |
哲学网编辑部 未经授权禁止复制或建立镜像,采用Wordpress架构,采用知识共享署名进行许可
官方邮箱:admin#zhexue.org (#换成@)索非制作|优畅优化|阿里云强力驱动
ICP证号:沪 ICP备13018407号
网站加载1.202秒
知识共享许可协议